a-Si:H 薄膜中 Si_uH_x 结构组态的原子模拟研究^{*}

翟世铭 廖黄盛 周耐根† 黄海宾‡ 周浪

(南昌大学材料科学与工程学院,光伏研究院,南昌 330031)(2019 年 8 月 22 日收到; 2020 年 2 月 6 日收到修改稿)

氢化非晶硅薄膜 (a-Si:H) 中 Si_yH_x结构组态对薄膜应用性能有重要影响,然而现有的分析测试手段难以 对其进行深入细致的研究.本文运用分子动力学方法模拟分析了 a-Si:H/c-Si 薄膜中 Si_yH_x结构组态,以及衬 底温度对其含量的影响;并进一步运用第一性原理方法计算了各 Si_yH_x组态中的 Si-H 键能.结果发现 a-Si:H 薄膜中 Si_yH_x结构可以归纳为六种组态.三类为以化学键结合的 SiH_x组态,包括 SiH, SiH₂和 SiH₃;另外 三类为以物理键结合的 HSi_y组态,包括 HSi₂(s), HSi₂(1)和 HSi₃.键能结果反映出六种组态的稳定性由高到低 的顺序为 SiH > SiH₂ > SiH₃ > HSi₂(s) > HSi₂(1) > HSi₃. HSi_y 组态中 Si—H 键能在太阳光中的可见光和红外 线的能量范围内,阳光照射引起 HSi_y组态中的 Si-H 物理键断裂,是非晶硅薄膜电池产生 S-W (Steabler-Wronski)效应的主要机理.另外,薄膜沉积过程中衬底温度的升高将导致各类 Si_yH_x组态含量大幅降低.

关键词: Si_yH_x结构, 键能, 氢化非晶硅薄膜, 分子动力学 **PACS:** 68.35.bj, 81.05.Gc, 31.15.xv

DOI: 10.7498/aps.69.20191275

1 引 言

氢化非晶硅薄膜 (a-Si:H) 具有良好的光电特 性.在太阳能电池领域,其与晶体硅形成的异质结 作为基础的非晶硅/晶体硅太阳能电池保持了晶体 硅太阳能电池的最高转换效率的世界纪录 26.7%(单面结构)^[1]和24.7%(双面结构)^[2],与传统 的晶体硅太阳能电池相比,非晶硅/晶体硅太阳能 电池还具有优良的温度特性^[3,4]、较高的开路电压、 高稳定性^[5]等优势,被业内公认为是下一代适宜规 模生产、市场竞争力强的太阳能电池.

但我们对 a-Si:H 的认识仍不够深入,其为非 晶结构,其结构和性能受制备过程中的工艺参数, 如衬底温度^[6-8]、入射动能^[9]、入射频率^[10,11]等影 响显著,且其结构在后继使用和热处理过程中会发 生变化, 典型的如光致衰减效应 (Steabler-Wronski 效应, S-W 效应)^[12]、热处理提高本征非晶硅层的 钝化效果等[13,14]. 普遍认为薄膜中特殊的 Si—H 键 中弱键断裂、迁移等机制是上述现象的可能原因[15]. 但在实验研究方面受限于制样和观测手段,只能对 薄膜的整体结构进行宏观统计上的分析, 难以得到 进一步的微观结构信息,更无法对不同工艺条件下 制备的薄膜结构进行详细分类, 深入理解其性能随 工艺演变的本质. 分子动力学模拟基于经典力学, 可追踪薄膜每个原子在相空间的运动规律和轨迹, 以及便于统计分析原子结构包括成键信息等优点, 是研究薄膜沉积生长和结构分析的有力工具.本课 题组前期利用分子动力学模拟研究了沉积参数对 a-Si:H薄膜中悬挂键含量、H含量、晶化率和 SiH_x键合等微观结构的影响,给出了本征非晶硅 钝化晶体硅的钝化效果在适度的温度下热处理可

* 国家自然科学基金 (批准号: 51561022, 51861023) 和江西省自然科学基金 (批准号: 20181BAB206013) 资助的课题.

© 2020 中国物理学会 Chinese Physical Society

[†] 通信作者. E-mail: ngzhou@ncu.edu.cn

[‡] 通信作者. E-mail: haibinhuang@ncu.edu.cn

获得改善的合理解释^[6,9].本文在该研究基础上进 一步模拟分析了 a-Si:H/c-Si 薄膜中 Si_yH_x组态的 种类、结构、稳定性,及衬底温度对其含量的影响, 以期对非晶硅薄膜的结构和性能随工艺的演变规 律有更进一步的认识.

2 模型与方法

2.1 薄膜沉积生长模型与方法

图 1 为 a-Si:H/c-Si (001) 薄膜生长的分子动 力学模型示意图. 衬底尺寸为 15a × 15a × 5.3a (a为硅的晶格常数),共约9900个原子.在Z方向, 衬底自下而上被分为三层:1)底部为固定原子层, 以防止沉积过程中衬底模型受入射原子的冲击而 飘移;2)中间部分为恒温层,在该层中采用 Langevin 方法控制其温度,即为衬底温度,防止由 于沉积过程中入射原子的动能导致衬底温度的升 高; 3) 顶部为自由层, 在该部分的原子处于自由运 动状态,不对其施加其他约束条件以避免恒温算法 可能引入的影响. 在 X和 Y方向上运用周期性边 界条件,用以模拟薄膜在无限大的表面上生长.原 子间相互作用采用由 Murty 和 Atwater^[16] 在 Tersoff 势^[17]的基础上修改得到的 Murty-Tersoff 势函数 来描述,时间步长设为 0.001 ps. 现有研究表明, SiH₃基团是获得高质量薄膜的主要自由基团,因

图 1 晶体硅衬底表面沉积生长 a-Si:H/c-Si 薄膜的模型 结构示意图

Fig. 1. Schematic diagram of the model structure about a-Si:H thin film deposited on the surface of crystalline silicon substrate. 此仅采用 SiH₃ 基团进行沉积. 沉积时 SiH₃ 基团在 衬底上方一定高度的空间区域内随机产生, 再垂直 入射到衬底表面. 结构分析时, 体系将快冷至约 0.01 K, 以消除热振动的影响.

2.2 结构分析及键能计算方法

Si_yH_x组态结构的键合状态、键长、键角均采用 Mercury 软件^[18]进行分析. Mercury 作为一款可视化软件,可以提供体系所有原子成键的键长、键角信息. Si_yH_x组态中 Si—H 键的键能采用 VASP软件^[19]进行计算,计算模型中 Si—H 键的键长键角均采用各 Si_yH_x组态统计得到的平均值.

3 结果与讨论

3.1 a-Si:H/c-Si 薄膜结构

在不同沉积参数下模拟沉积 a-Si:H, 得到的 a-Si:H/c-Si 薄膜原子结构基本类似.图 2 示出了模 拟衬底温度为 500 K 时沉积得到 a-Si:H/c-Si 薄膜 原子结构.图中原子分为两部分,底部为衬底层,

图 2 衬底温度为 500 K 时, 入射约 8000 个基团得到的 a-Si:H/c-Si 薄膜的原子结构示意图 (a) 和薄膜层的 RDF 图 (b) Fig. 2. Atomic structure of a-Si:H/c-Si film after depositing about 8000 groups with the substrate temperature of 500 K (a) and RDF curve of the film layer (b).

原子排列规则; 顶部为沉积生长的 a-Si:H 薄膜层, 原子排列混乱无序, 二者界面处在一定范围内 Si 原子从规则排列渐变为无序排列. 说明在模拟考 察的沉积生长参数下, 均能形成非晶结构的薄膜, 没有出现结晶现象. 其中棕色原子和较小的红色原 子分别为沉积的硅原子和氢原子, 可以发现氢原子 主要分布在薄膜层的内部, 但因其半径小, 少部分 可扩散进入衬底层. 图 2(b) 为薄膜层的径向分布 函数. 图中径向分布函数曲线的第一峰为尖锐的高 峰, 后续第二峰、第三峰非常弱, 说明该结构短程 有序长程无序, 为典型的非晶结构的径向分布函数 曲线, 进一步说明了薄膜为非晶结构.

3.2 $Si_{u}H_{x}$ 组态的结构分析

为研究 H 原子在 a-Si:H/c-Si 薄膜中的存在状态, 我们统计了 Si-H 键的键长分布, 如图 3 所示. 在图中 Si-H 键分布有两个明显的主峰, 以及之后 两部分较矮的峰群, 分别处于 1.42—1.49 Å, 1.49— 1.57 Å, 1.57—1.69 Å和 1.69—1.74 Å. 这可能对应 于不同的 Si₂H_x 组态.

为进一步分析 a-Si:H/c-Si 薄膜中的 Si_yH_x组 态,利用 Mercury 软件对模拟沉积生长得到的 a-Si:H 薄膜中的 Si-H 的键合状态、键长、键角进行 了统计分析,发现 H 原子在连接不同数量的 Si 原 子时,其 Si-H 键的键长、键角呈现出不同的特征. 根据传统价键理论,在 Si-H 结构中,单个 H 原子 通常只与一个 Si 原子形成化学键,结合成三种组 态:分别为 SiH, SiH₂和 SiH₃,记为 SiH_x组态.这 三类结构很容易鉴别出来,其结构示于图 4(a)— 图 4(c) 中.这三种组态中 Si-H 键的键长相近,集 中分布在 1.46 Å附近,对应于键长分布图 (图 3) 中的第一峰,在 a-Si:H/c-Si 薄膜中各 Si_yH_x组态中 长键角所占的比率最大.除了上述三种化学键结合 的 SiH_x组态外,我们还发现了 H 与周围的 Si 原子 形成物理键,以氢桥 Si-H-Si(HSi₂)或 HSi₃ 的形式 出现,记为 HSi_y. a-Si:H 薄膜中氢桥的存在曾被报 道过^[20,21],但对于氢桥的结构特征分析不够明晰. 我们进一步分析还发现 HSi₂结构中存在两种具有 不同键长键角特征的组态,一种组态的 Si—H 键长 处在 1.49—1.57 Å范围,键角集中分布在 123°—

图 3 a-Si:H 薄膜中 Si-H 键的键长分布 (沉积条件: 衬底 温度为 500 K, 入射动能为 1.45 eV, 入射频率为 1 ps/个基团) Fig. 3. The bond length distribution of the Si-H bond in the a-Si:H film (Deposition conditions: substrate temperature is 500 K, the incident kinetic energy is 1.45 eV, and the incident frequency is 1 ps/group).

图 4 a-Si:H 薄膜中 Si_yH_x组态的结构示意图 (a) SiH; (b) SiH₂; (c) SiH₃; (d) HSi₂(s); (e) HSi₂(l); (f) HSi₃ Fig. 4. The structure Schematic diagram of Si_yH_x in the a-Si:H film: (a) SiH; (b) SiH₂; (c) SiH₃; (d) HSi₂(s); (e) HSi₂(l); (f) HSi₃.

137°之间,因 Si—H 键长较短,记为 HSi₂(s),如图 4(d) 所示.另一种组态 Si—H 键分布在 1.5—1.68 Å范 围, Si—H—Si 键角大于 140°,记为 HSi₂(l),如图 4(e) 所示.不难发现 HSi₂(s)和 HSi₂(l)两种组态对应于 键长分布图 (图 3)中的第二峰和第三峰群,其中 HSi₂(s)的含量明显高于 HSi₂(l).图 4(f)示出的是 HSi₃结构组态.它的 Si-H 键在所有组态中最长, 大于 1.7 Å.同时它的 Si-H-Si 键角最小,小于 118°. HSi₃组态对应于键长分布图 (图 3)中的最 后一个小峰,在所有组态中占比最少.

3.3 各 Si_yH_x 组态的稳定性

为分析以上六种 $Si_{u}H_{x}$ 组态的稳定性, 我们采 用第一性原理方法计算了它们的 Si-H 键能, 计算 时各组态模型中的键长键角均采用统计得到的平 均值.同时将这些键能与太阳光的光子能量进行对 比,结果示于图 5 中.通过键能的高低可以发现它 们的稳定性由高到低的顺序为: SiH > SiH₂ > $SiH_3 > HSi_2(s) > HSi_2(l) > HSi_3$. 只有 SiH 键的 键能超出太阳光能量区间,而SiH₂,SiH₃,HSi₂(s), HSi₂(1), HSi₃组态的键能都处于该能量区间内. 但 在实际非晶硅薄膜电池结构中,非晶硅表面还有一 层铟锡氧化物半导体透明导电膜 (ITO) 或加上一 层玻璃层. 实验研究表明, ITO 层或玻璃层几乎可 以吸收掉太阳光中的全部紫外线[22].也就是说,只 有可见光和红外线可以真正照射到 a-Si:H 薄膜上, 从能量上正好对应于 Si-H 物理键的三种组态结构 HSi".

图 5 各 Si_yH_x 组态中 Si-H 键能与太阳光能量对比图 Fig. 5. Comparisons of Si-H bond energy in each Si_yH_x configuration with solar energy.

可以想象一下太阳光照射到电池上的场景:首 先紫外线被 ITO 或玻璃层全部吸收,只有可见光 和红外线透过 ITO 层到达 a-Si:H 薄膜表面. 它们

因能量太低,不会引起 SiH_x组态中 Si-H 键断键, 也就不会产生自由 H 原子; 但它们可与三种 HSi, 组态中 Si-H 物理键产生交互作用, 引起某个 Si-H 物理键断裂. 这种物理键的断裂, 只会让 H 原子 位置产生偏移,远离原成键 Si 原子,偏向其余的 Si 原子, 同时引起 Si 原子电荷中心的变化. 对于断 键的 Si 原子来说, 断键将增强其价电子的不饱和 度, 类似于产生了一个强度较弱的 Si 悬挂键, 这将 导致电池性能的下降.因为光照断键的 H 原子仍 被原 HSi, 组态中的其他 Si 原子约束, 不易发生长 距离的扩散,所以在没有光照的条件下,经过结构 弛豫,原来的断裂的 Si-H 键又可能重新成键,恢 复电池的使用性能. 这个现象与非晶硅薄膜电池应 用过程中的 S-W 效应的演化规律非常符合. 对于 S-W 效应起因, 人们已经做了大量的工作, 并提出 了多种微观模型试图解释它,但至今仍没有形成统 一的观点. 而根据前面的分析结果, 我们认为光照 引起 HSi, 组态中的 Si-H 物理键断裂, 才是 S-W 效应的主要机理.

3.4 衬底温度对 $Si_{y}H_{x}$ 组态的影响

为了探讨沉积生长条件对 Si_nH_x组态的影响 规律,我们选择衬底温度这一对薄膜结构影响较 大的条件进行考察. 控制模拟参数: 衬底温度分 别为 300, 400, 500, 600 和 700 K, 基团入射频率为 1个/ps, 入射动能为 1.45 eV, 在 Si(100) 面上沉积约 8000 个基团. 然后统计了薄膜中悬挂键、SiH, 和 HSi, 含量随衬底温度的变化,如图 6(a) 所示. 该图以及 后续图中各组态的含量都以其中的最大值为参考 进行了归一化处理. 在不同衬底温度下, SiH, 含量 始终远大于 HSi, 的含量. 随温度升高, 薄膜中的 SiH_x 和 HSi_y含量呈下降趋势,这是因为衬底温度 越高,原子热振动加剧,Si-H弱键断裂形成氢气 离开薄膜概率增加,导致H原子含量降低的结果. 在 500 K 温度以下, 随温度升高, 悬挂键含量迅速 降低; 500 K后, 下降趋势变得平缓. 这是因为虽然 温度升高导致 Si-H 弱键断裂, H 原子溢出, 会形 成更多的 Si 悬挂键; 但高温有利于 Si 悬挂键之间 也发生重组,形成 Si-Si 强键,使得 Si 悬挂键含量 降低,后者的作用大于前者,总体上使得薄膜中 Si 悬挂键含量的降低.

进一步分析了 SiH_x的三种组态和 HSi_y 三种 组态含量随衬底温度的变化,分别示于图 6(b) 和 图 6(c) 中. 从图 6(b) 中可发现, SiH_x键合方式始 终以 SiH 键为主, SiH₂ 含量次之, SiH₃ 含量最少. SiH_x键 含量 随衬底温度的升高而降低.同时 SiH₃ 含量随衬底温度的升高也有大幅的减少.而 HSi_y中主要为 HSi₂(s) 组态, HSi₂(l)和 HSi₃ 含量 很少.随衬底温度的升高,三种组态含量呈现明显

图 6 不同衬底温度下沉积生长的 a-Si:H/c-Si 薄膜中的 悬挂键、SiH_x和 HSi_y相对含量 (a), SiH, SiH₂和 SiH₃的相 对含量 (b) 和 HSi₂(s), HSi₂(l) 和 HSi₃ 相对含量 (c)

Fig. 6. Relative contents of dangling bonds, SiH_x and $\text{HSi}_y(a)$, relative contents of SiH, SiH_2 and SiH_3 (b), and relative content of $\text{HSi}_2(s)$, HSi_2 (l) and HSi_3 (c) in a-Si:H/c-Si films deposited with different substrate temperatures.

的下降趋势. HSi₂(l) 在 400 K 之前含量迅速降低, 之后下降趋势变缓. HSi₃ 在 500 K 后含量降为 0, 这可能因为 HSi₃ 键能最低, 在高温下最不稳定.

4 结 论

本文采用分子动力学方法,模拟了在不同沉积 条件下得到 a-Si:H/c-Si 薄膜,并对其中 Si,H,组态 进行了结构分析,发现在 a-Si:H/c-Si 薄膜中除常 见的以化学键结合的 SiH_x 组态外, 还存在以物理 键结合的 HSi_u 组态. 根据 H 原子连接 Si 原子的数 量、Si-H键长及键角特征,我们把 $Si_{u}H_{x}$ 组态分 为 SiH, SiH₂, SiH₃, HSi₂(s), HSi₂(l) 和 HSi₃ 六种 类型, 前三种为 SiH_x 组态, 后三种为 HSi_y 组态. 通 过第一性原理计算各组态中的 Si—H 键能发现, 它 们的稳定性由高到低的顺序为: SiH > SiH₂ > $SiH_3 > HSi_2(s) > HSi_2(l) > HSi_3$. 且 HSi_y 组态中 Si-H 键能在太阳光中的可见光和红外线的能量范 围内. 阳光照射引起 HSi_u组态中的 Si-H 物理键 断裂,可能是非晶硅薄膜电池产生 S-W 效应的主 要机理.另外,薄膜沉积过程中衬底温度的升高将 导致各类 $Si_{u}H_{x}$ 组态含量的大幅降低.

参考文献

- Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 *Nat. Energy* 2 17032
- [2] Liu J, Huang S H, He L 2015 J. Semicond. 36 4
- [3] Mishima T, Taguchi M, Sakata H, Maruyama E 2011 Sol. Energy Mater. Sol. Cells 95 18
- [4] Li Z, Zhang X W, Han G R 2010 Phys. Status Solidi A 207 144
- [5] Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 *IEEE. J. Photovoltaics* 4 1433
- [6] Luo Y R, Gong H Y, Zhou N G, Huang H B, Zhou L 2018 *Appl. Phys. A* 124 18
- [7] Illiberi A, Creatore M, Kessels W M M, de Sanden M 2010 Phys. Status SolidiR 4 206
- [8] Bronsveld P C P, Mates T, Fejfar A, Kocka J, Rath J K, Schropp R E I 2010 Phys. Status Solidi A 207 525
- [9] Luo Y, Zhou N, Gong H, Huang H, Lang Z 2018 IOP Conf. Ser.: Mater. Sci. Eng. 284 012006
- [10] Hou G F, Fan Q H, Liao X B, Chen C Y, Xiang X B, Deng X M 2011 J. Vac. Sci. Technol., A 29 061201
- [11] Andujar J L, Bertran E, Canillas A, Roch C, Morenza J L 1991 J. Vac. Sci. Technol., A 9 2216
- [12] Staebler D L, Wronski C R 1977 Appl. Phys. Lett. 31 292
- [13] Zhang D, Tavakoliyaraki A, Wu Y, van Swaaij R, Zeman M 2011 Energy Procedia 8 207

- [14] Alnuaimi A, Islam K, Nayfeh A 2013 Sol. Energy 98 236
- [15] Qin G G, Kong G L 1988 J. Semicond. 01 103 (in Chinese)
 [秦国刚, 孔光临 1988 半导体学报 01 103]
- [16] Murty M V R, Atwater H A 1995 Phys. Rev. B 51 4889
- [17] Tersoff J 1988 Phys. Rev. B 37 6991
- [18] Macrae C F, Bruno I J, Chisholm J A, Edgington P R, Wood P A 2008 J. Appl. Crystallogr. 41 466
- [19] Hafner J, Kresse G 1997 Properties of Complex Inorganic Solids (New York: Plenum Press) pp69–99
- [20] Sriraman S, Agarwal S, Aydil E S, Maroudas D 2002 Nature 418 62
- [21] Robertson J 2000 J. Non-Cryst. Solids 266 79
- [22] Kim H, Horwitz J S, Kushto G, Piqué A, Kafafi Z H, Gilmore C M, Chrisey D B 2000 J. Appl. Phys. 88 6021

Atomic simulation of Si_yH_x structure configuration in a-Si:H thin films^{*}

Zhai Shi-Ming Liao Huang-Sheng Zhou Nai-Gen[†]

Huang Hai-Bin[‡] Zhou Lang

(School of Materials Science and Engineering, Institute of Photovoltaics, Nanchang University, Nanchang 330031, China) (Received 22 August 2019; revised manuscript received 6 February 2020)

Abstract

The hydrogenated amorphous silicon (a-Si:H) film is the core structure of hetero junction with intrinsic thin layer solar cell. Its quality determinates the photoelectric conversion efficiency of this solar cell directly. The configuration of $Si_{x}H_{x}$ is an important structure characteristic of a-Si:H films, and it can influence on the quality of a-Si:H thin films and their application properties. However, it is difficult to study them in depth and detail by the existing analytical and testing methods. In this paper, the structure configuration of $Si_{y}H_{x}$ in a-Si:H /c-Si thin films and the effect of substrate temperature on its content have been simulated and analyzed by molecular dynamics method. A modified Tersoff potential developed by Murty was used to calculate the interatomic forces. The results showed that the $Si_{y}H_{x}$ structure in a-Si:H thin films can be summarized into six configurations. Three traditional configurations, including SiH, SiH₂ and SiH₃, can be referred to as SiH_x configurations. The other three nove configurations, including $HSi_2(s)$, $HSi_2(l)$ and HSi_3 , can be referred to as HSi_{u} configurations. The main differences between the configurations of $HSi_{2}(1)$ and $HSi_{2}(s)$ are the longer Si—H bonds and bigger bond angle in $HSi_2(l)$ configuration than those in $HSi_2(s)$ configuration. All of the Si-H bonds in SiH_r configurations are strong chemical bonds, while the Si—H bonds in HSi_v configurations are weak physical bonds. The further calculations of the Si-H bond energies in six configurations have been carried out by the first principle method. According the bond energies results, we can deduce that the order of the stability of six configurations from high to low is $SiH > SiH_2 > SiH_3 > HSi_2(s) > HSi_2(l) > HSi_3$. Comparing the Si—H bond energies of the six configurations with the solar energy, it is found that the Si-H bond energy in HSi_{μ} configuration is in the range of visible and infrared light in solar light. Si-H physical bonds are easy to fracture in HSi_{u} configuration caused by solar light. This may be the main mechanism of producing Steabler-Wronski (S-W) effect in amorphous silicon thin film cells. In addition, the rise of substrate temperature in the deposition process of a-Si:H films will lead to a significant decrease in the configuration content of all kinds of $Si_{y}H_{x}$ configurations.

Keywords: $Si_{y}H_{x}$ configuration, bond energy, hydrogenated amorphous silicon thin films (a-Si:H), molecular dynamics

PACS: 68.35.bj, 81.05.Gc, 31.15.xv

DOI: 10.7498/aps.69.20191275

^{*} Project supported by the National Natural Science Foundation of China(Grant Nos. 51561022, 51861023) and the Natural Science Foundation of Jiangxi Province, China(Grant No. 20181BAB206013).

[†] Corresponding author. E-mail: ngzhou@ncu.edu.cn

[‡] Corresponding author. E-mail: haibinhuang@ncu.edu.cn